Evidence on Work-related Causation of Carpal Tunnel Syndrome

David Rempel, MD, MPH, FACOEM

Professor, Occupational and Environmental Medicine
University of California, San Francisco
Professor, Bioengineering
University of California, Berkeley

Conflict of Interest Disclosure

I have no financial relationships with commercial entities producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients relevant to the content I am planning, developing, presenting, or evaluating.

I, David Rempel, MD, hereby declare that the content for this activity, including any presentation of therapeutic options, is well balanced, unbiased, and to the extent possible, evidence-based.

Question

What are the relative contributions of the following risk factors to CTS?

a. Hand repetition
b. Pinch force
c. Power grip force
d. Wrist posture
e. Dissatisfied with job
Evidence on Work-related Causation of Carpal Tunnel Syndrome / David Rempel, MD, MPH, FACOEM

Question

What are the relative contributions of the following risk factors to CTS?

a. Hand repetition 20 exertions/min
b. Pinch force 15 N
c. Power grip force 40 N
d. Mean wrist posture 30 degrees extension
e. Dissatisfied with job dissatisfied or very d.

Systematic Review: Work & CTS

[van Rijn RM et al. SJWEH 2009; 35:19-36]

Average hand force
> 40 N [> 10 N]
Repeated rapid motions
> 50% cycle same motions
Cycle<10s
Vibration
>3.9 m/s
Prolonged or repeated wrist flexion or extension
Psychosocial (negative)
Computer use (mixed)

1. Roquelaure et al. SJWEH 1997; 23:364
3. Bovenzi et al Int Arch Occup Environ H 2006; 78:303-10

Force, Repetition and CTS

CTS and Workplace Risks

- No prospective studies with...
 - CTS based on narrow criteria using NCS
 - Detailed exposure assessment at individual level
 - Adequate power
- Exposure-response relationships are not well known
 - Linear, hocky-stick, threshold?
 - Biomechanical factors
 - Work psychosocial factors

Causation Criteria

[Bradford Hill 1980]

- Strength of Association
 - Magnitude of effect (RR, OR, HR)
- Temporality of Association
 - Exposure precedes outcome (prospective vs. cross-sectional)
- Consistency of Association
 - Similar findings across different studies
- Specificity of Association
 - A factor is associated with one outcome
- Dose-response Relationship
 - Individual level exposure assessment
- Biological Plausibility
 - Animal and human models of disease

Overview

- Animal models
- Human physiology
- Epidemiology – 5 Prospective Studies
- Potvin Fatigue Curves
Evidence on Work-related Causation of Carpal Tunnel Syndrome / David Rempel, MD, MPH, FACOEM

Ischemia – Reperfusion Injury Model
[Rempel, Dahlin, Lundborg. JBJS 1999; 11:1600]

- Repeated grasping or sustained postures
- Extraneural pressure elevations
- Ischemia – reperfusion injury
- Edema - endoneurial and synovial
- Persistent pressure elevation
- Demyelination, axonal degeneration
- Epineural fibrosis

Alternate Hypotheses

- Direct mechanical contact
- Nerve traction
- Amyloid deposits in synovium
- Inflammatory pathway with collagen deposition

Animal Models - CTS

- Rat - cuff
 - Powell and Meyers. Lab Invest 1986
- Rabbit – balloon
- Primate – volitional repetitive gripping
- Rat – volitional repetitive gripping
 - Barbe M et al. 2003-2013

2 h/day, 3 days/wk x 12 wks
LR = 2 /min
HR = 4 /min
LF = 15 % max
HR = 60 % max
Evidence on Work-related Causation of Carpal Tunnel Syndrome / David Rempel, MD, MPH, FACOEM

Human Physiology – Carpal Tunnel Pressure

Side view
Palmar view

CTP vs Wrist extension/flexion (N=37)

Pinch Force and CTP

Evidence on Work-related Causation of Carpal Tunnel Syndrome / David Rempel, MD, MPH, FACOEM

Pathophysiology

1. **High CT Pressure**
 - Image of hand with high carpal tunnel pressure.

2. **Low CT Pressure**
 - Image of hand with low carpal tunnel pressure.

Human Physiologic Studies

Carpal tunnel pressure and hand activities

Four recent, large, prospective, work-place epidemiologic risk assessment studies for CTS

- CTS criteria: media symptoms plus abnormal NCS
- Exposure data at the individual level

429 manufacturing workers in US followed for 1350 PY

- 35 incident CTS cases [2.6 cases/100 p-y]
 - Age
 - BMI [HR=1.06 (1.02-1.11)]
 - Other MSDs [HR=2.66 (1.30-5.45)]
 - Rheumatoid arthritis [HR=4.14 (1.48-11.59)]
 - Gardening outside work [HR=3.17 (1.34-7.46)]
 - TLV HAL Score [normalized peak force & repetition] (up to unit score of 1.25) [HR=3.8 (1.00-14.86)]
 - Strain Index [force, repetition, % duty cycle, posture, speed, shift duration] [HR=2.5 (1.00-6.13)]

347 health care and manufacturing workers followed for 694 PY

[Burt S et al. OEM 2013; 70:568]

- 29 incident CTS cases [5.1 cases/100 p-y]
 - Model 1
 - % time in forceful exertion
 - <20% 1.00
 - 20 to 60% 2.83 (1.18 – 7.79)
 - >60% 19.57 (5.96-64.24)
 - BMI (30 kg/m3) 3.19 (1.28 – 7.98)
 - Model 2
 - TLV for HAL ratio 1.40 (1.11 – 1.78)
 - BMI (30 kg/m3) 3.26 (1.45 – 7.31)
 - High job strain 2.13 (1.00 – 4.54)
Evidence on Work-related Causation of Carpal Tunnel Syndrome / David Rempel, MD, MPH, FACOEM

347 health care and manufacturing workers followed for 694 PY
[Burt S et al. OEM 2013; 70:568]

2299 industrial and service workers in Italy followed for 3825 PY

2299 industrial and service workers followed for 3825 PY

<table>
<thead>
<tr>
<th>Factors</th>
<th>Incident Rate Ratios*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>2.85 [1.51-5.37]</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>1.07 [1.04-1.14]</td>
</tr>
<tr>
<td>Age</td>
<td>1.06 [1.05-1.08]</td>
</tr>
<tr>
<td>Co-morbidities</td>
<td>1.91 [1.26-2.91]</td>
</tr>
<tr>
<td>HAL TLV (>AL, <TLV)</td>
<td>1.95 [1.21-31.6]</td>
</tr>
<tr>
<td>HAL TLV (>TLV)</td>
<td>2.70 [1.48-4.91]</td>
</tr>
<tr>
<td>HAL (unitary increase, 1-7)</td>
<td>1.37 [1.19-1.57]</td>
</tr>
<tr>
<td>Peak Force (unitary increase, 1-7)</td>
<td>1.31 [1.08-1.59]</td>
</tr>
</tbody>
</table>

*adjusted for sex, age, bmi, & co-morbidities (DM, gout, thyroid, RA, SLE, tendinitis)
Personal and Workplace Psychosocial Risk Factors for Carpal Tunnel Syndrome: A Pooled Study Cohort (N=3513) followed for 8833 PY
Harris C et al. OEM 2013; 70(8):529
Dale AM et al. SJWEH 2013 (Epub)

- Carisa Harris-Adamson, PhD
- Ellen A Eisen, ScD
- Ann Marie Dale, PhD
- Bradley Evanoff, MD
- Kurt T. Hegmann, MD
- Matthew S. Thiene, PhD
- Jay Kapellusch, PhD
- Arun Garg, PhD
- Susan Burt, ScD
- Stephen Bao, PhD
- Barbara Silverstein, PhD
- Fred Gerr, MD
- Linda Merlino, MS
- David Rempel, MD

Demographic Factors (N=3500)

<table>
<thead>
<tr>
<th>Factor</th>
<th>N</th>
<th>%CTS (n)</th>
<th>OR</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1895</td>
<td>81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1604</td>
<td>127</td>
<td>1.50</td>
<td>0.96</td>
<td>2.32</td>
<td>0.09</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>1102</td>
<td>166</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Diabetes</td>
<td>2475</td>
<td>193</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td>122</td>
<td>7</td>
<td>0.84</td>
<td>0.50</td>
<td>1.40</td>
<td>0.27</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
<td>1135</td>
<td>127</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Rheumatoid</td>
<td>2365</td>
<td>193</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>66</td>
<td>9</td>
<td>1.13</td>
<td>0.50</td>
<td>2.57</td>
<td>0.77</td>
</tr>
<tr>
<td>Thyroid Disease</td>
<td>1467</td>
<td>201</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Thyroid Disease</td>
<td>2320</td>
<td>196</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Disease</td>
<td>1119</td>
<td>105</td>
<td>1.54</td>
<td>0.72</td>
<td>3.32</td>
<td>0.44</td>
</tr>
<tr>
<td>Monthly Absentee Activity</td>
<td>1554</td>
<td>90</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-19 days</td>
<td>1033</td>
<td>127</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+ days</td>
<td>541</td>
<td>44</td>
<td>0.92</td>
<td>0.55</td>
<td>1.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Monthly Heavy/Manual Activity (Non-Occupational)</td>
<td>2112</td>
<td>144</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-19 days</td>
<td>1216</td>
<td>127</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+ days</td>
<td>396</td>
<td>61</td>
<td>0.99</td>
<td>0.51</td>
<td>2.02</td>
<td>0.89</td>
</tr>
</tbody>
</table>

HR for CTS by age (N=3500)

[Graph showing hazard ratios for CTS by age]
HR for CTS by BMI (N=3495)

<table>
<thead>
<tr>
<th>BMI Range</th>
<th>n (mean)</th>
<th>HR 1</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>p-value 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>100</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>High</td>
<td>390</td>
<td>1.10</td>
<td>1.05</td>
<td>1.15</td>
<td>0.00</td>
</tr>
</tbody>
</table>
| Psychosocial Risks (N=3080)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>n (mean)</th>
<th>HR 2</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>p-value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>671</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>High</td>
<td>401</td>
<td>1.10</td>
<td>1.05</td>
<td>1.15</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Seven Upper Extremity
Psychophysics Studies

Jim Potvin Fatigue Curves

[Potvin J. Human Factors 2012; 54(2):175]
Duty Cycle =
\% Time in High Force Pinch or Grip

\% Time in High Force Grip vs Repetition Rate
(N=2594, 12,000 observations)

Correlation: 0.29

UE Psychophysics Studies
[Potvin J. Human Factors 2012: 54(2):175]
Evidence on Work-related Causation of Carpal Tunnel Syndrome / David Rempel, MD, MPH, FACOEM

UE Psychophysics Studies

[Potvin J. Human Factors 2012; 54(2):175]

![Graph showing duty cycle vs. maximum acceptable effort]

Causation Criteria

[Bradford Hill 1980]

- **Strength of Association**
 - Magnitude of effect (RR, OR, HR)
- **Temporality of Association**
 - Exposure precedes outcome (prospective vs. cross-sectional)
- **Consistency of Association**
 - Similar findings across different studies
- **Specificity of Association**
 - A factor is associated with one outcome
- **Dose-response Relationship**
 - Individual level exposure assessment
- **Biological Plausibility**
 - Animal and human models of disease
Conclusions: Demographic Factors & CTS

<table>
<thead>
<tr>
<th>Factor</th>
<th>Consistency</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Age</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>BMI</td>
<td>++++</td>
<td>+++</td>
</tr>
<tr>
<td>Co-morbidity</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Home - hand hobbies:</td>
<td>+/-</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Psychosocial Factors & CTS

<table>
<thead>
<tr>
<th>Factor</th>
<th>Consistency</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>High demand & low control</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Feeling depression</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Low social support</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Job dissatisfaction</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Biomechanical Factors & CTS

<table>
<thead>
<tr>
<th>Factor</th>
<th>Consistency</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV for HAL</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Strain Index</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>% time high force grip</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Repetition</td>
<td>+/-</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions: CTS Causation

- Recent evidence for multifactorial causation
- Linear risk for age and BMI
- Risk for workplace psychosocial: high demand & low control
- Risk for TLV for HAL and Strain Index
- Risk for duration of high force pinch
- Role of repetition less certain; consider duty cycle
- Other important papers will be published next year

Questions?

Acknowledgements: research support from NIOSH [OH009712, OH007914, OH00121]